射线图像上两个区域之间的黑度差定义为影像的对比度,在射线影像上的对比度指的是影像黑度与背景的黑度之差。对窄束单色射线的情况,可以根据射线衰减规律推导。在实际的检测时一般都是宽束射线,因此必须考虑到散射线的影响,因此也可以推导出散射比。射线检测理论的基本公式是指导射线检测技术的基本公式,对实际检测过程中的缺陷,严格的说不能简单的应用公式进行计算,而是应考虑缺陷对射线的衰减特性。也就是缺陷引起的射线衰减远远小于同样小的被检测物本身引起的射线衰减,某个细节缺陷影像的射线对比度受到细节本身的性质和尺寸及射线检测因素、被透照物体本身的性质和尺寸等一系列因素的影响。对于一个特定的缺陷,要得到高的射线对比度就要选用可能较低能量的射线透照,来提高线衰减系数。选择适宜的透照布置使得该缺陷在透照方向具有较大的厚度差,采取措施减少散射线的强度。

射线既有光所具有的波粒二象性本质特性,同时又与可见光有很大的区别。X射线沿直线传播,射线粒子本身不带电量,不受电场和电磁作用的影响。射线与可见光一样在真空中以光速传播,并沿直线方向前进。X射线与物质相互作用时,它可以穿透物体,能量的衰减与物体的结构和厚度有关。X射线强穿透能力,射线能够透过可见光无法透过的物质,同时被物质吸收和散射,从而引起射线能量的衰减。射线的穿透能量与其波长以及被穿透材料的原子序数和密度有关,射线能量越大波长越短,硬度越高穿透能量越大。而被透照材料的原子序数越大,密度越大越难穿透。利用射线穿透物体,根据物体对射线的吸收能力与穿透能力,通过探测器、图像增强、图像采集等方法,观察物体内部的结构与状态。X射线的电离性质能排斥原子层中的电子,使气体电离也能影响液体或固体的电性质。射线的这一特性在通过空气时,也可使空气分解为正负离子成为导电体,空气的电离程度与吸收的射线剂量成正比。

线性二级管阵列是利用X射线闪烁晶体材料,如单晶的或直接与光电二极管相接触制作而成的射线线阵探测器。单晶体被切成很小的小块,形成图像中离散的像素。线性二极管阵列典型的构成是荧光层,一般由磷组成如钆氧硫化物。这层荧光被涂在光电二极管的单一阵列上,被检测的对象以恒定的速度对准X射线束移动。X射线穿透被检测对象到达荧光屏,产生的大量光子撞击屏幕发射出明亮的可见光线。通过光电二极管将这些光线转换为电子信号,图像处理器将电信号进行数字化,累积的数据线被组合成传统的二维物体的图像,显示在X射线检测机的计算机显示器上。线性二极管阵列技术广泛应用于工业异物检测和公共安全检查等领域。线性二极管阵列技术也正朝着快速扫描的方向发展,由于没有瓶颈问题的制约,使其达到了很高的发展水平。随着可编程器件和逻辑电路的应用,为高性能的探测器的出现创造了必要的条件,针对具体的应用和优化也更加容易。

当入射X射线穿过物体时,其光子将与物质发生复杂的相互作用。由于这些相互作用使从物体透射的一次射线强度低于入射射线强度,从而使X射线强度发生衰减。入射射线经过与物质的相互作用后,在出射的射线中包含透射的一次射线,未与物质发生作用而直接穿透物体。也就是说入射光子的能量,除保留在透射一次射线中的一部分外,另有一部分会转移到能量或方向已经改变的光子那里。还有一部分转移到与之相互作用的电子或产生的电子那里,这一过程也被称为散射。转移到电子的这一部分能量,由于电子可以与物质相互作用而有相当一部分损失在物体之中。入射到物体的射线由于一部分能量被吸收,一部分能量被散射而受到减弱使其强度产生衰减。按射线的能量可分为单色射线和连续谱射线,单色射线是指射线的能量是单一的,即射线只含有一种能量的光子是单一波长的。连续谱射线是指射线包含连续分布能量的射线,即射线含有不同能量的光子,射线的波长不是单一的而是一段波长范围。
-/gbabaag/-
http://www.xrayjc168.com